

SolarPaces 2008 Las Vegas,NV

Solar Steam at Nevada Solar One

Gilbert E Cohen Senior Vice President Acciona Solar Power

CENTRALIZED SOLAR FOR ELECTRIC GENERATION

INTRODUCING

Nevada Solar One

NSO PROJECT LOCATION

Solar One is located in the El Dorado Valley approx 35 miles SE of Las Vegas, Nevada

Nevada Solar One - Infrastructure

Nevada Renewable Portofolio Standard

Nevada's current RPS adopted in 2005 requires the state's electric utilities to generate or acquire a minimum of 6 percent of electricity sold to retail customers from renewable energy systems in 2005 and 2006, and gradually increases the standard until it reaches 20 percent in 2015.

The RPS includes a solar set-aside of 5 percent of annual renewable energy

Public Utilities Commission of Nevada created a Temporary Renewable Energy Development (TRED) Program allowing IOUs to collect revenue from electric customers to pay for renewable energy separate from other wholesale power purchased.

NEVADA SOLAR ONE - LAYOUT

SOLAR FIELD

POWER BLOCK

Control Room Building

SIMPLE SCHEMATIC OF PARABOLIC TROUGH OPERATION (North-South Axis)

Concentration Ratio 71:1 (71 Suns)

 NSO utilize Parabolic Trough Collectors which is a Concentrating Solar Power (CSP) Technology

 CSP Technologies utilize Direct Normal Radiation (DNR) which is measured in terms of Watts per Square Meter

Parabolic Trough Collector

NSO - Simple schematic

The solar thermal industry and especially the Concentrating Solar Power industry are being developed worldwide in a rapid pace, this should attract more large manufacturers to consider the production of solar field components at attractive costs.

PROJECT OVERVIEW NSO Characteristics

	SC)L/	4	R	FI	E	LC)
--	----	-----	---	---	----	---	----	---

Turbine Generator Gross Output

ń	Solar Collector Assemblies	760
	Aperture Area (m/ft)	5/16
	Aperture Area (m ² /sq. ft.)	470/5059
	Length (m/ft.)	100/328
	Concentration Ratio	71
,	Optical Efficiency	0.77
7	# of Mirror Segments	182,400
	# of Receiver Tubes	18,240
	Field Aperture (m ²)	357,200
	Site Area (Km²/acres)	1.62/400
	Field Inlet Temperature (°C/°F)	300/573
	Field Outlet Temperature (°C/°F)	390/735

POWER BLOCK

75 MWe

Net Output to Utility	72 MWe
Solar Steam Inlet Pressure	86.1 bars/1248.8 psi

Solar Steam Reheat Pressure 19.5 bars/282.8 psi
Solar Steam Inlet Temperature 371°C / 700°F

Nevada Solar One - Highlights

- √ 357,200 m2 of Solar Field
- √Generating Capacity 64 MW (Nominal)
- √ 72 MW Net Output Steam turbine

- ✓ Annual Production > 130,000 MWh
- ✓ NSO Reduce carbon dioxide emissions by ≈ 200,000,000 pounds per year- This is the equivalent of removing more than 19,000 cars from the nation's roads
- ✓ Capital investment : ≈ 266 Millions USD

CCiona SOLAR POWER Nevada Solar One – Highlights – (continued)

- ✓ Construction completed in Less than 18 months
- ✓ 1,600.000 men hours (An average of 400 jobs created for 18 months + 28 jobs for 20 + years for O&M)
- ✓ Excellent safety record

NSO Construction Manpower

SOLAR POWER

TIMELINE

- ➤ Long term Power Purchase Agreement signed with Nevada Power and Sierra Pacific March 2003
- ➤ Amendment for expansion to 64 MW approved in June 5, 2005
- ➤ Groundbreaking Feb 2006
- > Turbine delivered on site Nov 2006
- ➤ Utility Interconnection completed Nov 2006
- ➤ Solar Field 100 % Completed March 29 2007
- ➤ Utility Electrical testing May 18 2007
- > Steam quality achieved May 30 2007

FEBRUARY 2006

FEBRUARY 2007

TIMELINE (Continued)

- > Turbine overspeed testing May 30 2007
- Pre-Sync testing June 1 2007
- > First Synchronization June 2 2007
- ➤ Reliability testing for Nevada Power Company started June 6, 2007- Completed June 13, 2007
- >Plant performance testing (90% test)
- Commercial Operation June 22 2007

PERFORMANCE FORECAST

Max Hourly Net Electric Delivery

PERFORMANCE TESTING

Next steps

- Secure Purchase Power Agreement
- Secure new sites
- Develop and commercialize Thermal Storage

acciona NEVADA SOLAR ONE –FUTURE LAYOUT

Other Projects - SPAIN

4 Solar Power Plants – 50 MW each

La Risca One Under Construction

La Risca Two Under

Development

Palma Del Rio 1 Under Development

Palma Del Rio 2 Under Development

Thank you

